امکان سنجی بارورسازی ابرها با بررسی شرایط ابرناکی و برخی شاخص‌های نابایدازی در دشت مشهد

محسن رحمدل
دانشجو دکتری اداره هوایی مشهد

تاريخ دریافت: 95/11/10
تاريخ پذیرش: 96/08/10

چکیده
در این تحقیق بر اساس آمار سالانه‌های هوایی مشهد (1380-1390) به مطالعه ابرناکی دشت مشهد پرداخته شده و بیشترین فراوانی رخداد ابر مشخص گردیده است. با دقت در نظر گرفتن امتحانات ابری متنوع و بایبین در فرآیند بارورسازی، با استفاده از اطلاعات اداره هوایی مشهد (1380-1390) و بررسی قدیمی‌ترین فراوانی تنشیب ابری بایبین و متوسط و همچنین شرایط ابرناکی ابری بایبین برخی از شرایطی که با استفاده از داده‌های جویالایی، ایستگاه مشهد و با استفاده از فرمول‌های ایستگاه شرایط بارورسازی ابرها و بررسی داده‌های پیش‌بینی عمده، داده‌های CAPE و کلیدی: تعیین وضع هوا، شاخص کلیدی CAPE، شاخص شوآوت، آب قابل بارش و CAPE

مقدمه
در ۱۲ تابستان ۱۳۴۶ و ۱۰۵۱ کیلوگرم از قرص‌های بخ خشک را از یک هواپیما سیب به درون یک ابر استراتوکولوموسیلیک ایرانی به ۱۰۰۵ هوانوردی خریداری کرد. در همان حاشیه ۵ دقیقه ابر به ۱۰۰۵ به مدت یک هواپیما تبدیل شده و در زیر پایه این نژاد در طول چند ایستگاه دیگر می‌توانسته ایستگاه‌های یافته باقی بماند و حتی به کمک اندازه‌گیری شده و درون هواپیما سیب به عنوان هسته اینجوم در درون ابر رها کرد. این نژاد دارای به عنوان هسته ای یک نشان جدید را با عواطف و رفتاری که می‌تواند در نظر نشده را با عنوان هسته

1 mohsen rahmandel@yahoo.com
2 Cloud seeding
3 Skewt Diagram
4 http://weather.uwyo.edu/upperair/sounding.html
5 K Index
6 Showalter Index
7 Precipitable Water Index
8 Convective Available Potential Energy Index
سامانه‌های سطوح آبگیر باران

درباره پجن/ جلذ 44 / بار 96
52
52
ا٘دٕبز زض قطایظ ٔٙبؾت نؼٛز ٚ ٘بپبیساضی خٛی ثٝ...
9 بحیبّول
10 National Center of Meteorology and Seismology

خٙٛثی زقت تٛؼ ٚالغ قسٜ ٚ ضقتٝ وٜٛ ٞعاض ٔؿدس زض قٕبَ قطلی ٚ
ای وٝ زض ظٔیٙی تؼسیُ
ثٝ تسضیح ٘ٝ تٟٙب ٔطاوع ػّٕی ٚ
٘ی
اثط ذٛز اظ ضاٜ تِٛیس ثیكیٙی ذطزٜ ید ثٝ قىُ
ٚ ؾطػت ثبلاضٚ زض تِٛیس ذطزٜ ید
(نبزلی
ٔیّیٖٛ زلاض، تحت ٔسیطیت ٔطوع ثیٗ إِّّی ٞٛاقٙبؾی ٚ ظِعِٝ
اؾبؼ ایٗ تحمیك
ذٚاٖ
96
پطٚغٜ ثبضٚضی اثطٞب ٚ زض
ٞبی
زض
آة لبثُ
ایٗ
1381
اطافیبیی

بیكی زض حبَ اخطاؾت. زض تٍعاؼ آٔطیىب ٘یع
اؾت
ثّٙستطیٗ لّٝ ضقتٝ وٜٛ ٞعاض ٔؿدس،
899
بیكی زض حبَ اخطاؾت. زض تٍعاؼ آٔطیىب ٘یع
اؾت
ثّٙستطیٗ لّٝ ضقتٝ وٜٛ ٞعاض ٔؿدس،
899
بیكی زض حبَ اخطاؾت. زض تٍعاؼ آٔطیىب ٘یع
اثطٞبی ٕٞطفتی
ثٝ
(حٕیسی،
تٛاٖ ثٝ ضاثغٝ
فطا٘ؿٝ،
تٛخٝ
ازپب٘یب،
ٕٞچٙیٗ
زض ٔحتٛای اثط ٍٞٙبٔی وٝ ؾطػت ثبلاضٚی اثط وٕتط اظ
ؾپؽ
.)([Woodley & Rosenfeld, 2003)
طیق گرزآزان سمانان چهایی هواشناسی، در حال حاضر این در آمریکا با 16 پرتو از بیرا در
& Rosenfeld, 2003)
شناشیی، 2003
(دیمانی و میکروفریزی می.باشند)
ییتیچی اقیان میکروفریزی می.باشند
(قٞطیبی، 2012) 200 دلار برای مانندی سیستم و اقلیت هواشناسی، یکی از دقیق‌ترین مداربودهای بارانی است.
NCMS 11کمیسیون بحران‌زدایی، (NCMS) بحیبّول
میلیون دلار که توسط سیستم و اقلیت هواشناسی و زلزله منطقه مرقد، جهت تعبیر نتایج بارانی برای استحصال آب انجام شده است.
مواد و روش‌ها

منطقه مشهد، جهت تعبیر نتایج بارانی برای استحصال آب انجام شده است.

مواد و روش‌ها

شهرتستان مشهد از شمال به شهرستان کلات، از شمال غربی به درگز، از غرب به چناران و نیشابور و آز شرق به سرخس
و تربیت جام محدود می‌گردد. این شهر در انتهای جنوبی دریا واقع شده و رشته کوه‌های مرکزی در شمال شرقی و
رشته کوه‌های مرکزی در غرب و جنوب غرب آن قرار دارد.
بیشترین قله رشته کوه هزار متر، ۵۹/۹ متر از سطح دریا آراز. در (۹۸/۹۸ متر از سطح دریا آراز. در (۹۸/۹۸ متر از سطح دریا آراز.

9 Bhumibol
10 National Center of Meteorology and Seismology
امکان سنجی بارورسازی ابرها با بررسی شرایط بارورسازی و برخی ... روی تحقیق

روحیات بارورسازی با داشتن شرایط بارورسازی در بیان این ارجاع، اگرچه کل هوشمندی استان خراسان

رضوی انجام شده است. روی کار در این پژوهش استان‌های، آماری، فیزیکی، تحلیلی، سیستمیکی است. در اینجا به مورد

بررسی ابرسازی برخوردها شده و مادهایی که در آن بینشی ابرسازی راه داده مشخص شده است، آن که به توجه به هم‌پیشش نقش

ابرها دارای منافعی در فرآیند بارورسازی، در همه فراورده‌های که در آن ابرهای وابسته و متوسط تغییر در سطح، از

اطلاعات این است که استخراج گرده و مورد تجزیه و تحلیل قرار گرفته است. سپس به بررسی میزان ابرسازی ابرهای بایین

در شرایط نیمه ابری (3/8 تا 6/8 ابر) و شرایط تمام ابری (8/8 تا 8/8 ابری) پرداخته شده و بعد از آن تحلیل ابرسازی بایین

با رشد و توجه قابل شکل ابرهای کره‌ای (کوپولوس نوع 2) و کره‌ای بارا (کوپولیونیوس) مورد بررسی قرار گرفته است.

سپس با استفاده از نمودارها و داده‌های گرافیک بین شرایط بارورسازی، در همه فراورده‌های که در آن ابرهای وابسته و

تغییر بین‌دست ابرهای متنوع قبلا و بدون بارورسازی پرداخته شده و مناسبی دانایی به ارگان‌های از حالات

مشخص گردیده است. برعکس تعیین پایه ارگان به در و سیستمیکی از دیگر موجود در نظر گرفته شده است. در

12 Lifting Condensation Level

13 Convective Condensation Level

1381

12 Lifting Condensation Level

13 Convective Condensation Level

1381

12 Lifting Condensation Level

13 Convective Condensation Level

1381
اطلاعات استخراج شده از سالنامه هواشناسی، طی دوره آماری 1386، 174 روز در مجموع نشان داده شده است که با قله آب از سطح زمین نیز می‌توان تقسم بندی کرد. در رابطه با طراحی و اجرای طرح‌های باروری و افرازی از ماه 80 تا ماه 96، تعداد کف بارانی ابرهای پایین و متوسط مورد بررسی قرار گرفته است. به عنوان مثال، از ماه 80 تا ماه 96، تعداد کف بارانی ابرهای پایین و متوسط مورد بررسی قرار گرفته است. به عنوان مثال، از ماه 80 تا ماه 96، تعداد کف بارانی ابرهای پایین و متوسط مورد بررسی قرار گرفته است.

 بررسی میزان ابرهای پایین

در این سمت با توجه به اهمیت ابرهای پایین در فرآیند باروری، میزان ابرهای پایین بر اساس شرایط نیمه ابری (3/8 تا 7/8) و تمام ابری (7/8 تا 8/8) با بررسی و می‌توان انتقادی افرادی است. بررسی ابرهای پایین با رشد و نوسنج قائم در مکان‌های اجرای طرح‌های باروری به فراوانی رخداد، ارتفاع باره، شرایط تأثیر ابرهای پایین که قابلیت بست و گسترش قابلیت را دارد توی بیماری‌های شدید است. تشکیل این ابرهای فرآیندی بسیار سختی با کد 2 و 9 مشخص می‌شود و عوامل شرایط عوازل، میزان ماه و چندین در جو می‌باشد.

جدول 2: میانگین روزهای نیمه ابری (3/8 تا 7/8) و تمام ابری (7/8 تا 8/8) در ماههای مختلف مورد بررسی

<table>
<thead>
<tr>
<th>ماه</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیمه ابری</td>
<td>12/3</td>
<td>12/7</td>
<td>12/9</td>
</tr>
<tr>
<td>تمام ابری</td>
<td>8/5</td>
</tr>
</tbody>
</table>
| همان‌گونه که از جدول بالا مشخص است بیشترین افزایش ابرهای نیمه ابری پایین در ماه‌های دسامبر، زاپوری و فوریه، مارس، آوریل و میانگین افزایش این نیمه ابری که بیشترین افزایش این نیمه ابری که بیشترین افزایش در ماه‌های سپتامبر، اوت و سپتامبر است. بررسی ابرهای پایین با رشد و نوسنج قائم در مکان‌های اجرای طرح‌های باروری به فراوانی رخداد، ارتفاع باره، شرایط تأثیر ابرهای پایین که قابلیت بست و گسترش قابلیت را دارد توی بیماری‌های شدید است. تشکیل این ابرهای فرآیندی بسیار سختی با کد 2 و 9 مشخص می‌شود و عوامل شرایط عوازل، میزان ماه و چندین در جو می‌باشد.

جدول 3: میانگین روزهای همان‌گونه با تشکیل ابرهای نیمه ابری (3/8 تا 7/8) و تمام ابری (7/8 تا 8/8)

<table>
<thead>
<tr>
<th>ماه</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>cu_pb</td>
<td>2/3</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td>13/14</td>
<td>15/16</td>
<td>17/18</td>
<td>19/20</td>
<td>21/22</td>
<td>23/24</td>
</tr>
</tbody>
</table>

همان‌گونه که از بررسی جدول و اشکال بالا مشاهده می‌شود، بیشترین ابرهای با رشد و توسه قائم در ماه‌های مارس، آوریل و ماه رخ داده است.

بررسی تراز یخ‌بندان و دمای پایه
از پارامترهای دیگری که در تعیین و تشخیص فصل‌ها مکانی و زمانی مناسبی یک منطقه برای اجرای طرح‌های آفرینش بارش مورد مطالعه و ارزیابی قرار می‌گیرد. ارتفاع تراز یخ‌بندان و یا موقعیت مکانی استقرار آن در ارتقاء با ارتفاع پایه ابرهای است. در اجرای عملیات زراعی در شهرهای دامنه کوه، تأثیر اینگونه یکسانی مفید می‌باشد. پیش از هسته‌های بارش طبیعی است و در تناول کاری در فرآیند تشکیل پذیراری همیت بیشتری هستند. بیش‌ترین ماه‌هایی که در آن‌ها تمام یا قسمی از ضخامت ابرهای در بالای تراز یخ‌بندان قرار می‌گیرند، زمان مناسبی برای اجرای طرح‌های بازی فراهم می‌کند.

از 1381(4) برای تعیین پایه ابر به وسیله سادنی‌گری از یکا آب موجود در لیست‌های جو ایستفاده شده است، سطحی که از بخار اب انداز است می‌باشد و دماه نهایی هزار است. نظر گرفته شده است (ابراهیمی، 1370) در گزارش‌هایی که غالب ابرهای تشکیل شده ساناتسی بوده و بارشگویی، به صورت رگباری ناشی از دراصل نظر گرفته شده است.

بررسی شرایط بودن بارشگویی
از بررسی جدول (2) مشخص است که کمترین دمای پایه ابر در ماه‌های بدون بارشگویی مربوط به ماه‌های اولین، دوم و سوم هر سال است. در ماه‌های جون، ژوئیه، آگست و سپتامبر شرایط تمام ابری جهت اندوزگری دماه پایه ابر رخ نمی‌دهد.

<table>
<thead>
<tr>
<th>جدول (3): میانگین دماه پایه ابر در شرایط بودن بارشگویی</th>
<th>ماه</th>
<th>Dec</th>
<th>Nov</th>
<th>Oct</th>
<th>Sep</th>
<th>Aug</th>
<th>Jul</th>
<th>Jun</th>
<th>May</th>
<th>Apr</th>
<th>Mar</th>
<th>Feb</th>
<th>Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما (°C)</td>
<td></td>
<td>-5</td>
<td>-6</td>
<td>-7</td>
<td>-9</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
</tbody>
</table>

بررسی در شرایط بارشگویی
از بررسی جدول (3) مشخص است که کمترین دمای پایه ابر در شرایط بارشگویی مربوط به ماه‌های اولین، دوم و سوم هر سال است. در ماه‌های جون، ژوئیه، آگست و سپتامبر شرایط تمام ابری جهت اندوزگری دماه پایه ابر رخ نمی‌دهد.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>دما (°C)</td>
<td></td>
<td>-5</td>
<td>-6</td>
<td>-7</td>
<td>-9</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
</tbody>
</table>

دوره یکتاماهی: 12/18 باره
سامانه‌های سطوح آبگیر باران

بررسی شاخص‌های ناپایداری

شاخص‌های ناپایداری روان‌های مستند که به کمک آن‌ها می‌توان ناپایداری هم‌فوت مناطق مختلف جو را بررسی کرد (صادقی حسنی و رضاییان، ۱۳۸۵). در این قسمت بررسی ارتباط محصولات فیزیکی ارده و حساسیت اردهای مستعد جهت بارورسازی، از برخی شاخص‌های ناپایداری، از قبیل شاخص K، شوئنر، آب قابل بارش و شاخص $CAPE$ استفاده شده است. در این تحقیق ابتدا از آرشیو داده‌های اداره کل هواشناسی خراسان رضوی، در باره زمانی ۱۹۹۲-۲۰۱۱ روزهایی که در آن بارندگی ثبت شده بود استخراج گردید و میزان بارندگی ۲۴ ساعت به تفکیک سن سه سرعت مشخص گردید. از آنجا که اندام‌گیری داده‌های جویالای مشهد در سالهای گذشته به تعدا یکبار در روز (در ساعت ۰۰:۰۰) اندام‌گیری می‌شود و بنابراین برای افرادی صحت و دقت، میزان بارندگی در روزهایی که بارندگی رخ داده بود، از ساعت ۰۰ تا ۰۴ گرمی مشخص گردید. سپس با استفاده از داده‌های حاصل از نمودارهای اصوئویتی جویالای مشهد از سایی دانشگاه ایمبریک، شاخص‌های ذکر شده در روزهایی که در آن بارندگی رخ داده بود استخراج و همبستگی بین شاخص‌ها و بارش مورد بررسی قرار گرفت. جهت تعیین مقدار آستانه‌برای شاخص‌ها، همبستگی بین بارش با هر چند آن‌ها به طور مجزا مورد بررسی و تجزیه و تحلیل قرار گرفت و بهترین نمودار خطي توسط نرم‌افزار SPSS به این داده‌ها برخوردار شد. شاخص‌های ناپایداری K، شوئنر و ارائه پیشنهالی در دسترس و آب قابل بارش با استفاده از فرمول‌های زیر محاسبه می‌شوند.

$$K = \left(T_{\Delta h} - T_{ss} \right) + TD_{\Delta h} - (T_{w} - TD_{w})$$

$$SI = T_{ss} - T'$$

$$CAPE = \int_{Zlfc}^{Zel} Bdz$$

$$PW = \int_{Z}^{Zlfc} \rho w dz$$

جدول (۵): معیارهای مورد استفاده در شاخص‌های ناپایداری بالا

<table>
<thead>
<tr>
<th>شاخص</th>
<th>تعریف</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{ss}</td>
<td>دمای سطح ۵۵۰ میلیبار</td>
<td>درجه سانتی‌گراد</td>
</tr>
<tr>
<td>$T_{\Delta h}$</td>
<td>دمای دما دما در سطح ۷۲۲ هیلیبار</td>
<td>درجه سانتی‌گراد</td>
</tr>
<tr>
<td>T_d</td>
<td>دمای نقطه شبنم در سطح ۸۵۰ میلیبار</td>
<td>درجه سانتی‌گراد</td>
</tr>
<tr>
<td>T_{w}</td>
<td>دمای نقطه شبنم در سطح ۲۰۰ میلیبار</td>
<td>درجه سانتی‌گراد</td>
</tr>
<tr>
<td>Z_{el}</td>
<td>نقطه دما نزدیکترین نقطه در ارتفاع Z_{lfc}</td>
<td>کیلومتر</td>
</tr>
<tr>
<td>Z_{lfc}</td>
<td>نقطه دما نزدیکترین نقطه در جرم B</td>
<td>کیلومتر</td>
</tr>
<tr>
<td>ρ_w</td>
<td>جرم بارشی آب</td>
<td>کیلوگرمی بر متر مربع صفحه</td>
</tr>
</tbody>
</table>
امکان سنجی بارورسازی ابرها با بررسی شرایط ابرناکی و برخی...}

شکل (1): تعیین مرحله به مرحله شاخص شوالت بر نمودار اسکی‌تویی

شکل (2): محاسبه مقدار ارزوی پتانسیل در دسترس همیفتی به کمک نمودار اسکی‌تویی

جدول (۶): همیستگی بین پارش و شاخص‌های CAPE، و آب قابل پارش

<table>
<thead>
<tr>
<th>آب قابل پارش</th>
<th>شاخص همیستگی</th>
<th>شاخص CAPE</th>
<th>نمایه آماری / شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰۰۱</td>
<td>۷۱</td>
<td>۷۷</td>
<td>همیستگی پیرسون</td>
</tr>
<tr>
<td>۲۰۰۱</td>
<td>۷۱</td>
<td>۷۷</td>
<td>رضی در سطح ۱</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>همیستگی و سطح معنی‌داری</td>
</tr>
</tbody>
</table>

در جدول (۶)، همیستگی بین پارش تجعيد شش ساله از سال ۲۰۱۰ تا ۲۰۱۹، گرینویچ با شاخص‌های CAPE، شوالت و CAPE، و همیستگی بین قابل پارش با شاخص‌های CAPE و شاخص‌های CAPE، و همیستگی و سطح معنی‌داری بتوان از این شاخص‌ها در تعیین آستانه مناسب جهت بارورسازی ابرها استفاده کرد. به نظر می‌رسد از آنجا که فرآیندهای همیفتی غالب در ساعات بعد از ظهر اتفاق می‌افتد و جوی میزان شاخص CAPE، که نشان دهنده میران فرآیند همیفتی می‌باشد در ساعات ۲۰ گرینویچ انداره‌گیری شده بود که در منطقه مورد مطالعه مسافر با ساعات اولیه صح می‌باشد، در این ساعات غالب فرآیند همیفتی خفیف بوده و نقص ضعیفی در پارش‌ها دارد، بنابراین همیستگی
ضیفیه بین این شاخه و میزان بارش شش ساعت مشاهده شده است. با رسم چندین خط برازش بین بارش و شاخه‌های

۷. ضحیٓ ظازٜ، ف. (1390.) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۸. ضحیٓ ظازٜ، ف. (1391) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۹. ضحیٓ ظازٜ، ف. (1390) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۰. ضحیٓ ظازٜ، ف. (1391) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۱. ضحیٓ ظازٜ، ف. (1390) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۲. ضحیٓ ظازٜ، ف. (1391) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۳. ضحیٓ ظازٜ، ف. (1390) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۴. ضحیٓ ظازٜ، ف. (1391) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۵. ضحیٓ ظازٜ، ف. (1390) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۶. ضحیٓ ظازٜ، ف. (1391) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۷. ضحیٓ ظازٜ، ف. (1390) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۸. ضحیٓ ظازٜ، ف. (1391) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۱۹. ضحیٓ ظازٜ، ف. (1390) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.

۲۰. ضحیٓ ظازٜ، ف. (1391) ضٚـ ٞبی آٔبضی زض ٔغبِؼبت ٚ الّیٓ قٙبؾی. تٟطاٖ، ٘كط ؾیسثبلط حؿیٙی.
امکان سنجی بارورسازی ابرها با بررسی شرایط ابرناکی و برخی...

8 صادقی حسنی، س. و. م. رضاییان (1385). بررسی تعدادی از شاخص‌های تابعی و تستانی بارورسازی ابرهای هرمیکی منطقه اصفهان، مجله فیزیک زمین و فضا، جلد 23 شماره 2.
9 علیجاني، ب. (1385). آب و هوای ایران، تهران، دانشگاه پام تور.

The feasibility of cloud seeding in Mashhad plain with survey of cloudiness condition and instability indexes
Mmohsen Rahmdel
Eng. Mashhad meteorology center
Received: 2016/07
Accepted: 2016/12

Abstract
In this research paid attention to investigate cloudiness in Mashhad plain, based on the meteorological yearbook (1986-2008) that the most frequent overcast occurrence has been shown. Then we studied the prevalence of low and medium height clouds and average of them in each month, from Mashhad synoptic station data during 2001-2010, considering to the importance of medium and low clouds in the cloud seeding process and was paid to review condition of sky with low clouds. We investigate to the formation of low height clouds with vertical development, including cumulus (type 2) and cumulonimbus, in this region, given the importance of this clouds. The investigation of these cloud formations showed the most cloudiness has been occurred during cold and rainy seasons i.e. winter and early spring. The evaluation of the cloud base temperature and the level of freezing in this region has been done according charts and data of Mashhad station and using skewt with rainfall and without rainfall during 1992-2011. The basis of information has been obtained on the basis of overcast condition and the average of the cloud base temperature Some instability indexes (K, Showalter, Precipitable water, CAPE) was obtained in rainy days at 00Z, using data of Wyoming university website, during 1992-2011. Then was paid to investigate the correlation between instability index (K Index, Showalter Index, Precipitable water and CAPE Index) with 6 hours rainfall (from 00 to 06 Z). The studies showed a correlation is positive and significant at 1% between precipitable water, K index with cumulative 6-hour precipitation. According to the correlation and significance level, the Showalter index and CAPE index can be used in determining the appropriate threshold of cloud seeding. the data showed a very high scattering.

Keywords: Weather modification, K Index, Showalter Index, Precipitable water, CAPE