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ARTICLE INFO ABSTRACT

. . Satellite products are the only available data source with adequate spatial coverage,
Article type: however, their data do not match the observed values and have biases, although this
Research Paper discrepancy cannot be fixed precisely, however, a solution to reduce the bias is data
recalibration. Currently, machine learning techniques are used to improve the
accuracy of forecasting various types of weather phenomena, so regression solving

Article history such problems through methods based on machine learning and deep learning is very
i efficient. The daily precipitation of 19 rain gauge stations of the Ministry of Energy
Received: 27 November 2023 between 2010 and 2021 was extracted and compared to the average values of their

N corresponding daily precipitation pixels in the ERAS database. To measure the data,
Revised: 11 January 2024 three algorithms D-Tree, KNN, and MLP were used. The range of changes of
Accepted: 14 January 2024 correlation coefficient in MLP, D-Tree, and KNN is equal to [0.87, 0.98], [0.75,
. . 0.97], and [0.4, 0.87], respectively. In addition, the range of changes for RMSE in
Published online: 06 January 2024 {\pp varies from 0.7 to 2.4 mm per day, and these changes for D-Tree and KNN are
calculated between 0.8 to 2.2 and 1.2 to 2.5, respectively. In 75% of stations, RMSE
in MLP, D-Tree, and KNN algorithms is less than 1.5, 1.9, and 2.2 mm per day,

Keywords: respectively. The range of bias changes in MLP is [0.18, -0.6 mm per day] and this

. L. range of changes for D-Tree and KNN is respectively [0.16, 0.5 mm per day] and
Calibration, database, statistical [0.6, -0.8 mm per day] have been calculated. The bias of corrected data and observed
indicators, machine learning values in MLP, D-Tree, and KNN algorithms for the middle of the stations is -0.09, -

0.11, and -0.16 mm per day, respectively. The evaluation of the performance of three
machine learning algorithms (MLP, D-Tree, and KNN) in correcting the daily
precipitation of the ERA5 database and the comparison of CC, RMSE, and bias
statistical indices for the reproduced data compared to ground values showed that in
all three statistical indices, the MLP algorithm works better than the others and has
good accuracy for correcting the daily precipitation.
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EXTENDED ABSTRACT

Introduction: Spatial and temporal changes in precipitation significantly affect access to water for various human
needs and environmental conservation. Although ground-based rain gauge systems are the most reliable tools for
monitoring changes in precipitation at a point scale, various factors such as topography, remote locations, and
budget constraints limit their geographical use. Therefore, ground-based rain gauge networks in many parts of the
world are often spatially sparse and have weaknesses in spatial coverage. Satellite products are the only available
data source with global coverage; however, there is a mismatch between them and ground observations. The values
provided by sensors and data platforms cannot accurately estimate precipitation data due to multiple issues. These
problems are not easily solvable, however, one solution to reduce ambiguities is to calibrate the estimated data.
Currently, machine learning techniques are being employed to improve the accuracy of predicting various weather
phenomena. Therefore, solving regression problems of this nature through machine learning and deep learning
methods is not only possible but also very efficient. To this end, this study aimed to calibrate daily precipitation
values in the ERAS database by fitting these values against daily precipitation from 19 rain gauge stations of the
Ministry of Energy in the Khorasan Razavi province, using three algorithms: D-Tree, K-NN, and MLP.

Methodology: Khorasan-Razavi province is located in the northeast of Iran with an area of about 117,000 km?.
This province contains arid and semi-arid areas with a wide range of temperature changes and precipitation
patterns. Half of its area is made up of mountainous areas and the other half is plain and low-altitude areas. The
climate of this province is cold dry and its average annual precipitation is about 254 mm. The southern regions
of this province have less than 150 mm of precipitation per year, and the central and northwestern regions
receive more than 320 mm. In this study, we used three popular and widely used algorithms, decision trees, K-
nearest neighbors, and artificial neural networks for calibrating precipitation values. Daily precipitation values
from 19 rain gauge stations of the Ministry of Energy have been extracted since 2010 and compared to the average
daily precipitation pixel values from the ERA5 database. Using the above algorithms, terrestrial precipitation
values were estimated based on ERAS data, and correlation coefficient, RMSE, and bias indices were extracted and
compared for each of the three algorithms.

Results and Discussion: Performance evaluation of machine learning algorithms (MLP, D-Tree, KNN) in
correcting daily precipitation from ERA5 database and comparing them with statistical indices CC, RMSE, and
bias for the reproduced data relative to ground values showed that in all three statistical indices, the MLP algorithm
performed better than the other two algorithms and had suitable accuracy for correcting daily precipitation from
ERAGS. The range of changes in correlation coefficient in MLP, D-Tree, and KNN is [0.87, 0.98], [0.75, 0.97], and
[0.4, 0.87], respectively, and these changes for RMSE in MLP are between 0.7 and 2.4 mm per days. These
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changes for D-Tree and KNN are calculated between 0.8 to 2.2 and 1.2 to 2.5, respectively, in 75 stations, the
RMSE in MLP, D-Tree, and KNN algorithms is less than 5.5, 1.9, and 2.2 mm per day. The range of bias changes
in MLP [0.18, -0.6 mm d*] and this range of changes for D-Tree and KNN is respectively calculated as [0.16, 0.5
mm d*] and [0.6, -0.8 mm d™]. The corrected and observed bias in MLP, D-Tree, and KNN algorithms for the
middle of the stations are equal to -0.09, -0.11, and -0.16 mm per day, respectively.

Conclusion: With the advent of advanced technologies and the presence of satellites and associated databases in
the field of meteorological science, the time series of satellite precipitation values have become long enough to
analyze their applicability for water resources management. Although these data are cheap and easily accessible,
they do not have enough accuracy and they need to be calibrated with ground values. This study was shown that
MLP performed better in calibrating daily precipitation values in ERAS compared to the other two algorithms, as it
effectively increased the correlation coefficient and desirably reduced RMSE and bias. For further informations, it
is suggested to use deep learning techniques for calibrating monthly and annual precipitation values, as well as to
investigate and analyze the accuracy of microscaling and correction of satellite precipitation data in the Google
Earth Engine system.
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Table 1- Summary of methodological information of machine learning algorithms

Time

Study Scale Spatial Scale Algorithms
South-western, central, north-eastern and
He et al. 2016 Hourly south-eastern United States Random forests
. Random forests, artificial neural networks, support vector
Meyer et al. 2016 Daily Germany regression
Tao et al. 2016 Daily Central United States Deep learning
Yang et al. 2016 Daily Chile Quantile mapping
Baez-Villanueva et al. Daily Chile Random forests
2020
Chen et al. 2020 Daily Dallas—Fort Worth in the United States Deep learning
Chen et al. 2020 Daily Xijiang basin in China Geographically weighted ridge regression
Rata et al. 2020 Annual Chéliff watershed in Algeria Kriging
. L . Artificial neural networks, geographically weighted
Chen et al. 2021 Monthly Sichuan Province in China regression, kriging, random forests
Nguyen et al. 2021 Daily South Korea Random forests
Shen and Yong 2021 Annual China Gradient boosting decision trees, r_andom forests, support
vector regression
Zhang et al. 2021 Daily China Artificial neural networks, extreme learning r_'nachlnes,
random forests, support vector regression
. Coastal mountain region in the western .
Chen et al. 2021 Daily United States Deep learning
Fernandez Palomino Dail Ecuador and Peru Random forests
et al. 2022 Y
Lin et al. 2022 Daily Three Gorges Reservoir area in China Adaptive boosting deum;;:ér;ss, decision trees, random
Yang et al. 2022 Daily Kelantan river basin in Malaysia Deep learning
Alborz and Zaaros mountain randes in Artificial neural networks, locally weighted linear regression,
Zandi et al. 2022 Monthly Y Iran g random forests, stacked generalization,
support vector regression
Militino et al. 2023 Daily Navarre in Spain K-nearest neighbors, random forests, artificial neural
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Figure 1- Map of Razavi Khorasan Province and spatial distribution of automatic rain gauge stations of the Ministry
of Energy
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Table 2 - Specifications of the automatic rain gauge stations of the Ministry of Energy used in the research
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Table 3- Statistical indicators used in evaluating the performance of machine algorithms in estimating daily precipitation
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Table 4- Correlation coefficient of experimental daily precipitation data values of used algorithms with control stations
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Figure 2- Comparison of the statistical index of the correlation coefficient of the estimated precipitation of experimental
data and station values using the used algorithms
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Table 5- RMSE of daily test data of algorithms used with reference stations
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Figure 3- Comparison of RMSE statistical index of estimated precipitation of experimental data and station values using
the used algorithms
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