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Principal component analysis, Sarzab watershed, Bayesian linear regression,
artificial neural network  Flooding is one of the unfortunate events in nature,
which, if not predicted in time, can cause severe financial and life damages.
Therefore, estimating flood peak discharge is a crucial issue in hydrological
studies today. However, research on the use of remote sensing tools for
predicting, modeling, and managing floods in most of the country's watersheds
has received less attention. This research aims to determine the factors affecting
the flood flow discharge of the Sarbaz watershed and also evaluate the role of]
artificial intelligence methods, including the artificial neural network (ANN)
model, to predict the flood flow of this watershed. In this research, rainfall data,
soil moisture and temperature, evapotranspiration, base water flow, and
Enhanced Vegetation Index (EVI) from the Google Earth Engine system, as
well as observational data of flood event discharges of the studied area from
1380-1401, were used. Principal component analysis was then used to determine
the factors affecting flood discharge. These factors were modeled using
Bayesian linear regression to implement the artificial neural network models.
Finally, artificial neural network modeling was performed for flood flow
analysis. The results showed that the total rainfall of the current day and the
previous day, soil moisture at a depth of 0 to 10 cm of the previous day, and soil
temperature of the previous day were selected as the most appropriate input
patterns for modeling. The artificial neural network designed had an efficiency
factor of 0.90, a determination coefficient (R?) of 0.89, and a root mean square
error (RMSE) of 50.37 for the training stage. For the validation stage, it had an
efficiency factor of 0.76, an R? of 0.83, and an RMSE of 46.86, demonstrating
a good ability to estimate peak flood discharge. The results indicated that the
calibrated model for predicting flood flow using remote sensing data is practical
and has acceptable accuracy. Therefore, it can be an efficient tool to help
managers predict floods on time and reduce the resulting damages.
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EXTENDED ABSTRACT

Introduction: Floods are one of the most widespread environmental events that occur worldwide, causing
significant damage to natural resources and human societies. Today, implementing measures to manage floods
and minimize flood-related damage is imperative. Therefore, the use of flow forecasting systems to create flood
warning systems based on modeling, along with the use of remote sensing techniques and data, is essential to
reduce costs and enhance accuracy. In this regard, artificial neural networks are used to model flood flow.
Additionally, given the importance of speed and ease of operation in the use of artificial neural networks for flood
forecasting and warning systems, combining remote sensing data from Google Earth Engine with the capabilities
of neural network models can enable effective flood forecasting and warning in different areas. Based on this, this
research aims to determine the amount of daily discharge using data analysis obtained from the Google Earth
Engine (GEE) system and modeling by artificial neural networks to predict flood events affected by these floods.
Methodology: In this research, data of rainfall, soil moisture and temperature, evapotranspiration, base flow, and
the enhanced vegetation index (EVI) were analyzed in the Google Earth Engine system, along with observational
data of flood events in the Sarbaz watershed from 2001 to 2023. Principal component analysis (PCA) was used to
determine the factors that significantly impact flood discharge. These factors were then modeled using Bayesian
linear regression to implement artificial neural network models. In the final stage, principal component analysis
was used to determine the factors affecting flood discharge. This analysis was conducted in the R software
environment. The identified factors were then modeled using Bayesian linear regression in the JASP V0.16.3.0
software environment to implement artificial neural network models. In this research, modeling was performed
using an artificial neural network in the MATLAB R2018b software environment. 80% of the data were selected
for training, and the remaining 20% for the testing phase. To implement the most optimal structure of the artificial
neural network, log-sigmoid and tangent-sigmoid transfer functions were used with the Levenberg-Marquardt
training algorithm, utilizing a back-propagation network with a feed-forward architecture. In the artificial neural
network model, trial and error was used to determine the appropriate number of hidden layers and neurons. This
process continued until no improvement was observed in the R? and RMSE values. Finally, to select the ideal
artificial neural network model, the statistical criteria of root mean square error (RMSE), determination coefficient (R?),
and Nash-Sutcliffe coefficient were used.

Results and Discussion: The results of the PCA showed that precipitation, soil moisture at a depth of 0 cm to 10
cm, soil temperature, evapotranspiration, and the vegetation index (EVI) play important roles in predicting flood
discharge in the study area. Using these factors and Bayesian linear regression, the input patterns for the artificial
neural network were determined. Four models with different input patterns were used in this research. Model 1
included only the precipitation factor, Model 2 included precipitation and soil moisture at a depth of 0 to 10 cm,
Model 3 included precipitation and the vegetation index (EVI), and Model 4 included precipitation, soil moisture
at a depth of 0 to 10 cm, and soil temperature. The artificial neural network results indicated that the most suitable
input patterns were the total rainfall on the current and previous days, soil moisture at a depth of 0 cm to 10 cm
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from the previous day, and soil temperature from the previous day. The designed artificial neural network
effectively estimated peak flood discharge, achieving a Nash-Sutcliffe coefficient of 0.90, an R2 of 0.89, and an
RMSE of 50.37 for the training phase. For the validation stage, it showed a Nash-Sutcliffe of 0.76, an R2 of 0.83,
and an RMSE of 86.46.

Conclusion: The results of this research showed that using the data of rainfall, surface soil moisture and soil
temperature, with Nash-Sutcliffe of 0.90 and a R? of 0.89 and a RMSE of 50.37 for the training stage and Nash-
Sutcliffe of 0.76 and the R?of 0.83 and the RMSE of 86.46 for the validation stage can estimate the flood discharge
with acceptable accuracy. Thus, integrating artificial intelligence data with remote sensing from the Google Earth
Engine system has significant potential, offering sufficient accuracy and low cost in determining flood discharge.
This approach can be an efficient tool to help managers in timely flood forecasting, reducing flood damages, and
improving flood management. Finally, it is suggested to examine other factors influencing floods and explore
other artificial intelligence methods to enhance flood discharge prediction.
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Table 5- Modeling results using artificial neural network with four input patterns

o923l o] S e
bayY dlass Sl 5590] &b il al gl
NSE RMSE R? NSE RMSE R &% ' o Jolel o
S a9y
0.655 122620 0526 0.854 61.089 0.822 3 2 ] s el
Syl Slem Sy ————— 1
0597 130425 0433 0803 74273  0.682 2 2 SgeSms 3l
0.736 105201 0.738 0.865 58.810 0.849 3 3 oy Moo S
0.672 112427 0.682 0.781 69.144 0.784 3 3 PEIEEIT T e gl
0579 140724 0407 0.725 79.457 0.581 2 4 oy S S
0.602 131.829 0.445 0.799 71798 0.759 2 2 AN I
0756 86456 0.829 0901 50377 0.898 3 6 o5 Mool
0738 97526 0.751 0.868 62753 0.821 3 5 PEIETIT T g i

4 4l oo YO Sl S (@M 3 @By 25l )3 pos 5 pod slasSIl 1o ofag 4 oz sl e Wl @l Sl 42

oS yhde cpl 51 VL (sla 3 53 2539 )03 59501 93 51 yig (6394 B (23 039900 (0l 13 )l 9 ol (SlagS i8S o oo (095
» Shalie gy (3L Slubre gy (2 Bila cunl asuie (F) JS o & jsboplon il 03)5" Jos ogSUl b 5l i p)lez
nobn o 3l 58 polie (2> Bl yolie Sl By (gl & 90 odmliie pgw (g1 ) al agSl i 1 5 ke polee 55N
YL s o pd 93 52 oyl 9 p9d (o8I (F JS3) )15 o8 el bawgs (oMo (23 3910 5 Jo 0b5 (sllas ) (Lt g canl 00
@ Caus oMaw by (05 cpen 3 1) YL s SB glod juxio jeas Jdoa prlea (ool lis ;500 oSl 90 4y s
390 9 393 Ol (SN Egeome 4y oy o y3 (2348 3 (LS (e gian (as &Sl gl S )0 (B Joda 5 ¥ JS5) o (LS g (555
ey 2 sl by (0 &5 b (i (e re s )y (S J8 59 10 SB slod g U3 59, (gl daw ,3) S cugb) (S

Dgde oyt ) Oyged Olpe
Oi=F (X PAPvi, SMIvt, STiet, Y Pri+Pr2, SM112, STea, ., (X PrntPrn-jg SMI 1), STegn-1))

Slasi 1y 5oy oyleis 1) s S glod g Jgl a3 S Casb,y  SH)b by (23 s ST o SMI P O )] o &S
039 b (2w @y (2 (a5 )0 SR U5 oSl ol & cod o 5551 &5 2,5 LGN g oo (e (0300
b1y YL el

am3 o Ui 393 5 oyt o ly8 el 50ligS S 3b 0y93 b (oM (sl 23 3590 53 gl s dy s ¢ Jgl (66 )] Jolde po
adbate ;> a5 A3b ol dyge Mg oo Etge cl Y JS5) el JLuSid b lojen lalo o3l 3 (2w @85 ol 25TV USS)
o)Ll o 1S5l o L0yl (S o )L 51 s (6500 lelse & oo 989 uatand 95y Il 457 (Bl 3 dalland o
& LY gl Jlo b Jl 51 e b (Barlow et al., 2016) cusl ol yois LisY (sl Js QL%; & dalaio )0 JluSid glo Jlo 50 oS dgud
Uheel w5 0,5V (Bahrami et al., 2021) cuwl dbj oM 9 100 sl i)k Jlowst eyl ol 55 oy Legatd 5 50dS 1 gl
Ghassabi ) a5l azsls ol yeny |y aibianl sly )b L5 o ddlato )3 Col ol yod i ygusige 58,5 8 b logos a8 LY (gl Jlw 4858
A3l gl (23 5 (e @By mitn 2 ot 958 Wl e ob JLSiS slaasls o amd e (S £go9e (xl fetal., 2023
Oleim ©)go & Nl oo Sl cplawd oo )18 1l Cot pudins jobody ) SB- Casb) g (LS by 353 49 4 JluSis & 1o
) 65383 ey p 4 5l 3)lge (nl & 395 odmliie BLS (Jibey 9 Cagboy 3 U LL


https://dor.isc.ac/dor/20.1001.1.24235970.1403.12.4.6.5
https://jircsa.ir/article-1-558-en.html

[ Downloaded from jircsair on 2026-02-20 ]

[ DOR: 20.1001.1.24235970.1403.12.4.6.5 ]

(VFF OY als F o)) 31k ST ok glrdilolw

"

1200 450 350 175 100
3, 1000 280 140 = el

3 zgg‘ 300 210 105 % =il e

3
i e e bl |

35

< M TN oo ot e
1200 450 350 175 100

3, 1000 280 140 = Sl

3 zgg 300 210 105 % e

3

I e il L)
oo AN M - Lt . i lALEL |
1200 450 350 175 100

4, 1000 280 140 = Shale

e TR A T
|| | I " | poibhibolidytito Ll il
o e - Il

1200 450 350 175 100

3, 1000 280 140 = el

3 igg‘ 300 210 105 % =l Jo

3

I e e sl
o [ D e i . hichallllL

axllaod yg0 dllaio ;3 CYw 3ad g Flualivo (g031d 5 8uwd (3lw e &lF ke s b eI (K1,5 dwglio —£ JSG
Figure 4- Comparison of the four modeled patterns or models and observational data of flood events in the studied area
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Figure 5- The distribution diagram of the best input pattern in the test period using the artificial neural network model,
pattern 1 (a), pattern 2 (b), pattern 3 (c) and pattern 4 (d) (the confidence interval is marked with blue color)
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