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For the effective and optimal management of groundwater resources,
accurate predictions considering all prevailing conditions in aquifers,
particularly fluctuations in groundwater level and depth, are essential. The
objective of this study, conducted in the Qotbabad region of Jahrom County,
Fars Province, is to identify observation wells that provide the most reliable
predictions of groundwater depth in other wells. To achieve this, the
Adaptive Neuro-Fuzzy Inference System (ANFIS) was employed, in
combination with various training algorithms including Hybrid, Genetic
Algorithm (GA), and Particle Swarm Optimization (PSO). Groundwater
depth data from seven observation wells across the plain were used, covering
the period from October 2008 to September 2024. To evaluate model
accuracy, statistical indices such as Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE) were
utilized. Based on the results, observation well No. 2 was identified as the
most accurate predictor for wells No. 1 and 4, while well No. 5 was
identified as the least accurate predictor for wells No. 3 and 6. Additionally,
observation well No. 4, classified as a moderately accurate predictor,
demonstrated the best predictive performance for wells No. 2, 5, and 7, and
ranked second-best for wells No. 1, 3, and 6. This consistent ranking as
either the top or second-best predictor sets well No. 4 apart from the others.
Among all wells, the strongest linear relationship between observed and
predicted groundwater depths was obtained for well No. 4, with an average
coefficient of determination (R?) of 0.9945 across the three training
algorithms. Conversely, the weakest relationship was found for well No. 3,
with an average R2 of 0.7435. Overall, the Hybrid method proved to be the
most accurate and the fastest to execute, whereas the Genetic Algorithm
method, having the most execution time, exhibited the lowest predictive
accuracy.
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EXTENDED ABSTRACT

Introduction: Groundwater stored in aquifers is among the most vital resources of water supply, especially in
semi-arid and arid regions across the globe (Alayash et al., 2023). The analysis of these resources is critically
important for agricultural crop production and achieving sustainable development. Therefore, the need for
accurate and reliable estimation of groundwater levels or depths to prevent resource depletion is entirely
justified and well recognized (Jithendra and Basha, 2023). In recent years, the application of intelligent methods
in groundwater resource management—particularly for predicting groundwater level or depth—has become
increasingly prevalent. Researches focused on the analysis of groundwater level or depth time series has
demonstrated the superior performance of intelligent approaches compared to classical methods (Paliz Larrea et
al., 2021; Howard et al., 2022; Fadhil, 2022; Jithendra and Basha, 2023; Ghafoor et al., 2023; Alayash et al.,
2023; Patel et al., 2025). For instance, Zarafshan et al. (2023) employed machine learning and deep learning
techniques to simulate aquifer dynamics. In their research the selected models included Support Vector
Regression (SVR), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Multi-Layer Perceptron (MLP),
which were optimized using the Adaptive Moment Estimation algorithm. Their results revealed that while all
employed models demonstrated high accuracy, the machine learning and deep learning models outperformed
numerical models for the available dataset. Moreover, Patel et al. (2025) applied advanced univariate artificial
intelligence techniques, including Extreme Gradient Boosting, Light Gradient Boosting Machine and
Classification and Regression Trees to estimate and forecast groundwater levels. Their modeling approach
enabled highly accurate groundwater level estimation, particularly in data-scarce regions. Among the methods
used, XGBoost yielded the most precise results. Notably, none of the aforementioned studies utilized individual
observation well data to identify the most accurate predictor well for groundwater depth estimation based on
intelligent methods and various training algorithms.

Methodology: In this study, conducted within the Qotbabad aquifer located in the Kordian district of Jahrom
County, Fars Province, the Adaptive Neuro-Fuzzy Inference System (ANFIS) was employed as the base method
to identify the most suitable observation well for estimating groundwater depth fluctuations in other wells across
the plain. In addition to this primary objective, the performance of each learning algorithm used in this research,
including the hybrid algorithm, genetic algorithm (GA), and particle swarm optimization (PSO) was evaluated.
Given the presence of seven observation wells in the study area, time series data from these wells were collected
for the period spanning October 2008 to September 2024 (192 months) to construct the input datasets for the
model. After data preparation, the model training phase was conducted by tuning key parameters through an
iterative algorithm. For the model testing phase, 25% of the total dataset was utilized, and the most accurate
model was identified by comparing error indices according to predefined evaluation criteria. To measure the
accuracy of the models, the indices of RMSE, MAPE and MAE were used. This procedure was applied
individually to each well. Ultimately, for every well, the most accurate predictor was determined from among
the remaining sixobservation wells.

Results and Discussion: Table 1 compares the average results obtained from the model using all three training
algorithms across all observation wells. As can be seen, in the test phase, wells No. 2, 4, and 5 have been
identified as the best estimators. Observation well No. 2 was selected as the strongest predictor for wells No. 1
and 4, while observation well No. 5 was identified as the weakest predictor for wells No. 3 and 6. Observation
well No. 4, considered a moderate estimator, yielded its best results for wells No. 2, 5, and 7, respectively. As
illustrated, during the training phase, well No. 1, similar to the testing phase, achieved the highest prediction
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accuracy among all wells. Although well No. 3 produced better accuracy indicators in the training phase
compared to the testing phase, its overall performance in training remained weaker than that of the other wells,
placing it in the seventh position.

Table 1- Ranking of predictive wells (the best predictors) in both training and testing

Average (Test phase) Average (Training phase)
Well Best RMSE ~ MAE  MAPE Rank RMSE  MAE MAPE Rank

no. predictor

1 2 0.18 0.13 0.61 1 0.14 0.11 0.53 1

2 4 0.78 0.6 0.16 5 0.92 0.82 3.35 6

3 5 1.01 0.79 7.11 6 0.94 0.64 4.28 7

4 2 0.45 0.35 0.71 2 0.52 0.49 1.05 3

5 4 0.65 0.58 2.85 4 0.76 0.53 3.02 4

6 5 12 0.92 2.22 7 0.85 0.62 2.68 5

7 4 0.45 0.34 141 3 0.38 0.35 1.36 2

An assessment of the regression relationships between predicted and observed groundwater depth values for the
top-performing wells revealed that the strongest linear relationship belonged to observation well No. 4, while
the weakest was associated with observation well No. 3. The coefficients of determination (R?) obtained for the
three training algorithms—Hybrid, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO)—for well
No. 4 were 0.9957, 0.9925, and 0.9959, respectively, while for well No. 3, the corresponding values were
0.7668, 0.7051, and 0.7585.

Conclusion: One of the practical applications of this study lies in the more accurate estimation of missing or
unrecorded groundwater depth data from observation wells in the region. Additionally, in situations where
collecting groundwater depth measurements is costly, a selective data collection approach can be adopted based
on managerial decisions. In such cases, wells with lower prediction accuracy should be prioritized for direct
measurement. The results indicated that the highest and lowest prediction accuracy were observed for wells No.
1 and No. 6, respectively. These were predicted by wells No. 2 and No. 5, with MAPE, MAE, and RMSE values
of 0.18, 0.13, and 0.61 for well No. 1, and 1.2, 0.92, and 2.22 for well No. 6, respectively. Furthermore, in the
regression relationships obtained, the highest coefficient of determination (R2) was associated with well No. 4,
approximately 0.9947, while the lowest belonged to well No. 3, with a value of around 0.7435. As previously
noted, model execution was assigned to an iterative algorithm to enable the optimization of parameters that lead
to the best results. On average, the Hybrid algorithm required approximately 120 minutes per run, whereas the
PSO and GA algorithms each required between 250 to 300 minutes—demonstrating a clear advantage of the
Hybrid approach in terms of computational efficiency. If the predictability of each well is assessed based on the
average accuracy indices obtained from the other wells, observation well No. 1 shows the highest predictability,
while well No. 4 exhibits the lowest among all wells.
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Figure 1- Geographical location of the research site in Fars province
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Figure 2- The hydrograph of the aquifer in the case study region
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Table 2- Accuracy indices of groundwater depth prediction in the well 1 and the rank of each well

Anfis + PSO Anfis + GA Anfis + Hybrid

Rank MAPE MAE RMSE | Rank MAPE MAE RMSE | Rank MAPE MAE RMSE ol 5 lowd

1 0.61 0.13 0.19 1 0.65 0.14 0.18 1 0.57 0.12 0.17 2

6 4.54 0.95 1.11 6 4.64 0.97 1.36 6 4.52 0.94 1.09 3

2 0.73 0.15 0.21 2 0.68 0.14 0.20 2 0.69 0.15 0.21 4

3 3.70 0.77 0.95 3 3.98 0.82 1.02 4 3.79 0.81 0.94 5

4 3.82 0.80 0.98 5 417 0.87 1.05 5 3.72 0.78 0.97 6

5 4.29 0.90 1.02 4 4.25 0.86 1.03 3 3.54 0.74 0.92 7
2.95 0.62 0.74 3.06 0.63 0.81 2.81 0.59 0.71 Mean
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Table 3- Accuracy indices of groundwater depth prediction in the well 2 and the rank of each well

Anfis + PSO Anfis + GA Anfis + Hybrid
Rank MAPE MAE RMSE Rank MAPE MAE RMSE Rank MAPE MAE RMSE ol oslols
2 1.7 0.95 1.46 2 2.28 1.23 1.68 2 1.58 0.88 1.39 1
6 9.37 4.88 5.71 3 8.79 4.59 5.52 3 4.52 0.94 1.09 3
1 11 0.58 0.74 1 131 0.68 0.89 1 1.06 0.55 0.72 4
4 7.48 3.78 5.08 5 7.97 411 5.16 5 7.57 3.94 4.92 5
5 8.02 4.18 5.31 6 8.69 4.55 5.64 6 7.69 3.98 4.93 6
3 7.56 3.98 5.01 4 8.91 4.42 3.99 4 7.26 3.81 4.74 7
5.87 3.07 3.88 6.32 3.26 3.81 4.95 2.35 2.96 Mean
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Table 4- Accuracy indices of groundwater depth prediction in the well 3 and the rank of each well

Anfis + PSO Anfis + GA Anfis + Hybrid
Rank MAPE MAE RMSE | Rank MAPE MAE RMSE | Rank MAPE MAE RMSE | ol> osleds
5 13.07 1.39 1.67 5 13.32 1.45 1.64 2 1.58 0.88 1.39 1
6 13.12 1.42 1.70 4 12.57 1.34 1.75 6 13.81 1.49 171 2
2 9.96 1.08 1.41 2 11.52 1.15 142 3 10.1 1.13 1.40 4
1 7.51 0.81 1.03 1 7.28 0.81 1.03 1 7.04 0.75 0.97 5
4 11.87 1.29 1.54 6 14.45 151 171 5 12.69 1.38 1.63 6
3 11.96 1.26 1.50 3 11.83 1.28 1.56 4 10.57 1.19 1.44 7
11.25 1.20 1.47 11.83 1.26 1.51 9.30 1.14 1.36 Mean
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o5 @S &5 Y o)led (slodalio oly 5l b c8)S s 3 F o)lad (glosalio ol (sl JKueSS (n 338> (lsiear Glgiee |y oy
Slaslds ioled 4 Gl cpl 5T 6558 ol 4y cds aoly pleo )l ¥ ojleds ol 4y e gla s ls a5, (Sap e o
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Table 5- Accuracy indices of groundwater depth prediction in the well 4 and the rank of each well

Anfis + PSO Anfis + GA Anfis + Hybrid
Rank MAPE MAE RMSE Rank  MAPE MAE RMSE | Rank MAPE MAE RMSE ol oyl
2 1.04 0.52 0.74 2 1.31 0.67 0.92 2 1.01 0.53 0.71 1
1 0.66 0.32 0.40 1 0.81 0.4 0.53 1 0.67 0.33 0.40 2
6 10.06 4.83 5.51 6 9.91 481 5.38 6 9.63 4.64 5.27 3
3 7.86 3.84 4.88 4 8.71 421 5.06 3 7.51 3.55 4.61 5
4 8.26 3.94 4.98 3 8.57 4.16 4.97 4 7.92 3.79 4.69 6
5 8.43 4.05 491 5 9.21 441 5.06 5 8.33 4.01 481 7
6.05 2.92 0.73 6.42 311 3.65 5.84 2.81 3.40 Mean
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S 5 Jde eSS iyl Sl mls ) duslie sl oo (Y/4F o /OY o /VF) 5l Syl (6 5u80b gy dw (gl Hlai 590 (sl a3l
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(Fajemilo & Ozegin, 2025) c.é,5 1,8 3,51 5,90 ANfis Jae


https://dor.isc.ac/dor/20.1001.1.24235970.1404.13.2.4.6
https://jircsa.ir/article-1-584-fa.html

[ Downloaded from jircsa.ir on 2026-02-20 ]

[ DOR: 20.1001.1.24235970.1404.13.2.4.6 ]

179 e o003 T B8 (e S (Slonaliio Waoly (it R

ol 52 bl b oS dy g w2y 0l 40 (oo 25 2T (Bos cmi iy 85 B yaS L -5 Jgaa
Table 6- Accuracy indices of groundwater depth prediction in the well 5 and the rank of each well

Anfis + PSO Anfis + GA Anfis + Hybrid
Rank MAPE MAE RMSE | Rank MAPE MAE RMSE | Rank MAPE MAE RMSE ol ol
6 6.67 1.21 1.60 6 7.07 1.29 1.59 5 6.42 1.12 1.54 1
3 5.07 0.91 1.39 5 6.81 1.24 1.58 6 6.43 1.31 1.56 2
2 5.68 1.01 1.21 3 5.89 1.07 1.35 2 5.91 1.02 1.23 3
1 3.35 0.57 0.81 1 2.96 0.51 0.73 1 2.76 0.51 0.74 4
4 6.27 1.16 141 2 5.67 1.03 1.28 3 6.11 1.10 1.36 6
5 6.52 1.19 1.49 4 6.36 1.16 1.39 4 6.37 1.17 143 7
5.59 1.01 1.32 5.79 1.05 1.32 5.67 1.04 131 Mean
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Table 7- Accuracy indices of groundwater depth prediction in the well 6 and the rank of each well

Anfis + PSO Anfis + GA Anfis + Hybrid
Rank  MAPE MAE RMSE Rank MAPE MAE RMSE Rank  MAPE MAE RMSE | ol oyled
3 2.75 112 1.71 5 3.26 1.35 1.78 6 3.08 1.26 1.69 1
5 3.14 1.29 1.76 3 3.09 1.26 1.85 5 3.03 1.24 1.70 2
6 3.36 1.38 1.79 6 3.29 1.37 1.72 4 2.93 1.23 1.60 3
2 2.61 1.07 1.30 2 2.60 1.08 1.46 2 2.50 1.03 143 4
1 2.07 0.85 1.11 1 2.45 1.01 131 1 2.15 0.90 1.17 5
4 2.76 1.14 1.39 4 3.28 1.34 1.61 3 2.59 1.08 151 7
2.78 1.15 1.50 2.99 1.23 1.62 2.71 1.12 1.52 Mean
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Table 8- Accuracy indices of groundwater depth prediction in the well 7 and the rank of each well

Anfis + PSO Anfis + GA Anfis + Hybrid
Rank  MAPE MAE RMSE | Rank MAPE MAE RMSE | Rank MAPE MAE RMSE ol o;lo
2 1.65 0.4 0.61 2 1.79 0.43 0.57 2 1.46 0.35 0.54 1
3 1.75 0.42 0.69 6 2.55 0.61 0.81 3 1.78 0.42 0.65 2
6 2.67 0.65 0.78 5 2.54 0.61 0.75 6 2.61 0.62 0.76 3
1 1.43 0.35 0.47 1 1.44 0.35 0.44 1 1.37 0.33 0.44 4
5 217 0.52 0.65 4 2.39 0.58 0.69 5 2.35 0.57 0.66 5
4 2.05 0.49 0.58 3 1.87 0.45 0.55 4 1.97 0.48 0.59 6
1.95 0.47 0.63 2.08 0.51 0.63 1.92 0.46 0.61 Mean
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Table 9- Ranking of predictive wells (The best predictors)

Average
Rank MAPE MAE RMSE (R 02 50) 7 2 0 ol oslad
1 0.61 0.13 0.18 2 1
5 1.16 0.60 0.78 4 2
6 7.11 0.79 1.01 5 3
2 0.71 0.35 0.45 2 4
4 2.85 0.58 0.65 4 5
7 2.22 0.92 1.20 5 6
3 1.41 0.34 0.45 4 7
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Table 10- Obtained results for the best predictors at training step

Average
Rank MAPE VIAE RMSE (o (0 j ) 5 2t ol olr oslew
1 0.53 0.11 0.14 2 1
6 3.35 0.82 0.92 4 2
7 4.28 0.64 0.94 5 3
3 1.05 0.49 0.52 2 4
4 3.02 0.53 0.76 4 5
5 2.68 0.62 0.85 5 6
2 1.36 0.35 0.38 4 7
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Figure 4- Regression relationship for groundwater depth in well 1 (well 2 as the best estimator)
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Figure 5- Regression relationship for groundwater depth in well 2 (well 4 as the best estimator)
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Figure 6- Regression relationship for groundwater depth in well 3 (well 5 as the best estimator)
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Figure 7- Regression relationship for groundwater depth in well 4 (well 2 as the best estimator)
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Figure 8- Regression relationship for groundwater depth in well 5 (well 4 as the best estimator)
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Figure 9- Regression relationship for groundwater depth in well 6 (well 5 as the best estimator)
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Figure 10- Regression relationship for groundwater depth in well 7 (well 4 as the best estimator)
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