در این تحقیق سعی گردید، ترکیب ورودی و مدل مناسب برای تخمین بارشهای شهرستان شاهرود تعیین گردد. برای رسیدن به این هدف از دادههای ماهانه هواشناسی شامل تبخیر، دما، رطوبت نسبی هوا، تابشهای خورشیدی، سرعت باد در دوره آماری 1342 تا 1394 و مدلهای شبکه عصبی مصنوعی و ماشین بردار پشتیبان استفاده شده است. 75 درصد از دادهها برای واسنجی و 25 درصد دیگر جهت اعتبارسنجی مدلها استفاده شده است. در این تحقیق از شبکه عصبی مصنوعی پرسپترون چند لایه با تابع تانژانت سیگموئید و 1 تا 30 نرون در لایه پنهان و از مدل ماشین بردار پشتیبان با تابع کرنل پایه شعاعی جهت تخمین بارشهای منطقه شهرستان شاهرود استفاده شده است. عملکرد هر یک از مدلها با استفاده از شاخصهای آماری مجذور میانگین مربعات خطا و ضریب همبستگی ارزیابی شده است و عدم قطعیت مدلها نیز به ازای دو پارامتر d-factor و p-factor تعیین گردیده است. با توجه به این که هر دو مدل عملکرد مناسبی در تخمین بارش داشتهاند، ولی مدل ماشین بردار پشتیبان با خطا و عدم قطعیت کمتری نسبت به مدل شبکه عصبی مصنوعی، عملکرد بهتری در تخمین بارش شهرستان شاهرود داشته است. بنابراین مدل ماشین بردار پشتیبان میتواند به عنوان یک مدل بسیار مناسب در تخمین بارش مورد استفاده قرار گیرد.
Mohammadi B, moazenzadeh R. Uncertainty analysis of artificial neural network models and support vector machine in rainfall estimation. Journal of Rainwater Catchment Systems 2017; 5 (1) :43-50 URL: http://jircsa.ir/article-1-246-fa.html
محمدی بابک، موذن زاده روزبه. تحلیل عدم قطعیت مدلهای شبکه عصبی مصنوعی و ماشین بردار پشتیبان در تخمین بارش . سامانههاي سطوح آبگير باران. 1396; 5 (1) :43-50
تکمیل و ارسال فرم تعارض منافع نویسنده گرامی ، پس از ارسال مقاله ، جهت دریافت فرم، لطفا بر روی کلمه فرم تعارض منافع کلیک نمایید و پس از تکمیل، در فایل های پیوست مقاله قرار دهید.