|
|
 |
Search published articles |
 |
|
Showing 5 results for Swmm
Soraya Ghasemi, Mahmoud Faghfour Maghrebi, Volume 3, Issue 1 (6-2015)
Abstract
Abstract
Assessment of flood phenomena and street floods in runoff transmission network basins shows that in some cases rainwater transmission channels cannot transmit current flow after a while - especially during peak flow- due to an increase in impervious surfaces, particularly owing to some changes in physiographic characters of the basin.. To solve such problems, many research efforts have been undertaken and practical procedures have been implemented. Delay ponds are one of the methods to solve these problems. Other optimal management strategies, BPMs, which can be used depending on the technical and economic conditions in order to solve such problems are biological remain systems, porous coating of streets, vegetative swale, etc. In this paper, a review of literatures is presented and then our research procedure is presented. Then some issues such as drainage network modeling process in the SWMM software environment are presented. The modeling procedure has been done in Status quo coupled with using delay ponds, in order to find the routes in the network and compare both waterways hydrograph (with and without delay ponds), hydrograph of the individual components in existing networks as well as using the network with delay ponds. It was observed that using delay ponds could be effective especially in limited urban areas. And it can reduce the peak hydrograph flow, increase the peak flood time and as a result, control and optimize management of flood. For this purpose during a two-stage modeling, two and three places were positioned for the construction of flood control basins. It is shown that in case of using two and three basins, the peak discharge were is reduced by 31% and 38%, respectively.
Mr. Ahad Tavasoli, Mrs Akram Hoseinnia, Mr Ali Shahbazi, Volume 5, Issue 2 (9-2017)
Abstract
1. احمدی شرف ا. و م. تجریشی (1393). جانمایی حوضچههای ذخیره با استفاده از مدل شبیهساز SWMM و تصمیمگیری چند معیاره مکانی، مجله آب و فاضلاب، شماره 6، ص. 57-66.
2. احمدیان م. (1391). بررسی رواناب شهری با استفاده از مدل SWMM به منظور کاهش خطر سیل ( مطالعه موردی: شهر جدید هشتگرد). پایاننامه کارشناسی ارشد، دانشگاه آزاد واحد علوم و تحقیقات. 150 ص.
3. اسلامیان س.س.، م. نادری بنی و س.س. اخروی (1391). راهکارهای مدیریتی رواناب و رفع گرفتگی معابر شهری، مجموعه مقالات اولین کنفرانس ملی سامانههای سطوح آبگیر باران، مشهد مقدس.
4. تاجبخش س.م.، س.ج. طباطبایی، ا. توسلی، ع.ا. صفدری و م. سمیعی (1391). استفاده از روانابهای سطوح سنگی در آبیاری تکمیلی (مطالعه موردی ارتفاعات جنوبی مشهد)، فصلنامه سطوح آبگیر باران، سال اول، شماره 3، پاییز، صفحات 1 تا 5.
5. توسلی ا.، م. وفاخواه و ا. حسیننیا (1387). مکانیابی مناطق ذخیرهای مسیلهای شهری مشهد با کمک GIS، چکیده مقالات سومین کنفرانس مدیریت منایع آب ایران، دانشگاه تبریز، 21 الی 23 مهر ماه، 605 ص.
6. رستمی خلج م. (1390). پهنهبندی خطر سیل شهری با استفاده از تلفیق مدلهای هیدرولوژیکی و هیدرولیکی (مطالعه موردی منطقه دو شهرداری مشهد)، پایاننامه کارشناسی ارشد آبخیزداری، دانشگاه تهران.
7. سلمان ماهینی ع.، ا. حسین نیا، س.م. قاسمپوری، ا. توسلی و م. رضایی (1391). ارزیابی دراز مدت اثرات هیدرولوژیک (L-THIA) تغییر کاربری بر رواناب سالانه در مقیاس حوضه آبخیز، فصلنامه جغرافیا و توسعه، شماره 26، بهار، ص. 125-134.
8. شهبازی ع. (1391). مدیریت رواناب شهری به منظور کاهش خطرات با استفاده از مدل SWMM. پایاننامه کارشناسی ارشد، دانشکده منابع طبیعی دانشگاه تهران. 150 ص.
9. صادقی ح.ر.، ا. توسلی و ا. حسیننیا (1387). تاثیرپذیری کمیّت آبهای سطحی از تغییر اقلیم در حوضه آبخیز بار نیشابور، در لوح فشرده اولین کنفرانس ملی روز جهانی محیط زیست، دانشگاه تهران، 20 الی 21 خرداد ماه.
10. طباطبایی یزدی ج.، ح. توکلی، ع.ا. عباسی، م. عباسی، ج. باغانی و ر. غفوریان (1388). استحصال آب باران، چش انداز مدیریت بهینه رواناب شهری (مطالعه موردی در شهر مشهد)، چکیده مقالات اولین همایش آبخیزداری شهری، مرکز مطالعات و برنامهریزی شهر تهران، 10 تیر.
11. عباسی ع.ا.، ج. طباطبایی یزدی و ر. صدیق (1391). بررسی امکان توسعه مدل بارش رواناب برای سطوح آبگیر کوچک شهری، مجموعه مقالات اولین کنفرانس ملی سامانههای سطوح آبگیر باران، مشهد مقدس.
12. عینلو ف. (1393). اثر تغییر کاربری و توسعه شهری بر تولید رواناب )مطالعه موردی: شهر زنجان). پایاننامه کارشناسی ارشد، دانشکده منابع طبیعی دانشگاه تهران. 180 ص.
13. مشاور زیستاب (1391). مطالعات عملیاتی کردن طرح جامع مدیریت آبهای سطحی و تهیه طرحهای بهسازی انهار و کانالها در منطقه 1 شهرداری تهران.
14. Chio W. and Deal B.M. (2008). Assessing Hydrological Impact of Potential Land use Change through Hydrological ang Land use Change Modeling for the Kishwaukee River Basian (USA). Journal of Environmental Management. 86 :1119-1130.
15. Cunderlik J. and Simonovic P. (2004) .Assessment of water resources risk andvalnerability to changig climatic condition, university of western Ontario, project report IV.
16. Dongquan Z., Jining C., Haozheng W., Qingyuan T., Shangbing C. and Zheng S. (2009). GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach, (case study in Macau). Environ Earth Sci, 59: 465–472.
17. Gironás J., Roesner L.A., RossmanL.A. and Davis J. (2010). A new applications manual for the Storm Water Management Model (SWMM). Environmental Modelling & Software 25 (6), 813-814.
18. Huber W.C. and Dickinson R.E. (1992). Storm water management model user’s manual, version 4. Environmental Protection Agency, Georgia.
19. Nash J.E. and Sutcliffe J.V. (1970). River flow forecasting though conceptual models. Part 1-A discussion of principles. J. Hydrol. 10: 282-290.
20. Palmeri L. and Trepel M. (2002). A GIS-based score system for siting and sizing of created or restored wetlands: two case studies. Water Res. Manag., 16: 307-328.
21. Perry P. and Nawaz R. (2008). An investigation into the extent and impacts of hard surfacing of domestic gardens in an area of Leeds, United kingdom. Landscape and Urban Planning 86: 1-13.
22. Phillips B.C., Yu S., Thompson G.R. and Silva N. (2005). 1D and 2D Modelling of urban drainage systems using XP-SWMM and TUFLOW. 10th International Conference on Urban Drainage, Copenhagen, Denmark, 21-26 August, 8 pp.
23. Santhi C., Arnold J.G., Williams J.R., Dugas W.A., Srinivasan R. and Hauck L.M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37:1169–1188.
24. Sourisseau S.A., Basser S.F. and Perie T. (2007). Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams. Water Res.
25. Temprano J., Arango O., Cagiao J., Suarez J. and Tejero I. (2006). Storm water quality calibration by SWMM: a case study in Northern Spain. Water SA, 32(1): 55-63.
26. Tsihrintzis V. and Hamid R. (1998). Runoff quality prediction from small urban catchments using SWMM. Hydrol Process, 12(2): 311-329.
27. Zoppou C. (2001). Review of urban storm water models. Environmental Modelling & Software 16:195–231.
Vahedberdi Sheikh, Raziye Izanloo, Volume 5, Issue 3 (12-2017)
Abstract
In the past decades, urban development and the increase of impervious surfaces have caused an increase in the volume and peak discharge of runoff along with an increase in its pollution. Bojnord is one of the cities affected by flooding. This study is an attempt to analyze the feasibility of using the infiltration trench system in some parts of Bojnord and predict its effects using SWMM. Runoff generation volume was calculated with return periods of 2, 5 and 10 years using SWMM. Then, the results were compared with two conditions using and not using infiltration the trench system and the reduced runoff generation volume was analyzed in the case using the infiltration trench system. The results of this study indicated that the reduced runoff generation volume with return periods of 2, 5 and 10 years are equal to 6.51, 6.26, and 6.18%, respectively.
Fatemeh Beheshti, Mohammad Tajbakhsh, Ali Shahidi, Volume 10, Issue 1 (6-2022)
Abstract
New approaches to urban runoff management seek to reduce the volume and discharge of rainfall peaks as well as the amount of pollutants in urban areas to a level that is reminiscent of rainfall runoff in the decades before urban development. SWMM software is one of the best models to help in this field and it can be used to study the effects of using water harvesting methods on the volume of runoff and peak flow and thus reduce flooding of roads. Simulation of the drainage network in the north of Birjand city showed that the sewerage network of Birjand city does not have the necessary efficiency to pass floods with different return periods and is flooded in different parts. If the problem is not solved by the relevant organizations, in the not too distant future, it will witness a large flood and as a result, irreparable damage will be undeniable. For this purpose, using two methods of holding ponds and collecting water from the roofs, which can be used at a lower cost than other methods of water extraction; , in this study was examined. Considering that the use of water extraction systems in the whole basin is economically unfeasible and justified. In most studies, this system is used only in a part of the field. As a result, by applying rainwater extraction methods in Birjand urban watershed, we can see an 80% reduction in runoff volume in Birjand. On the other hand, the use of ponds in the green space of the city can help irrigate the green space and in addition to saving urban water consumption, is also effective in reducing the peak discharge of floods.
Mahdi Amini Yazdi, Mahmoud Faghfour Maghrebi, Volume 11, Issue 2 (8-2023)
Abstract
Uncontrolled floods always cause extensive financial and human losses in cities. Flood control is one of the most important goals of urban management. In this regard, an attempt has been made to investigate the effect of delayed ponds on the flood control of the Eghbal Floodway located east of Mashhad. East Eghbal Floodway, with a sub-catchment of about 13850 ha, is one of the most significant floodways of the developing Mashhad metropolis, including eight major floodways and 213 sub-catchments with many urban facilities. To evaluate and simulate the flood path, the precipitation pattern was calculated using different methods, including the concentration time of each sub-catchment. The most extended length of the stream, the uniform distribution of catchment sensitivity, periodic block, and peak flood flow caused by critical rainfall with a 50-year return period were calculated at the outlet. Finally, according to the topography of the area and available places using two, three, and four detention ponds to consider 11 different scenarios (economic-hydraulic), the peak flow of the flood decreased, and the time of peak flow increased. By evaluating and comparing different scenarios, scenario number 11 (using four detention ponds reduces the peak flood discharge by 48%) was the best hydraulic scenario. In addition, scenario number 4 (using two detention ponds reduces peak discharge by 24%) was the best economic scenario. A dry trapezoidal catchment within the network with two outlets, a lower opening, and a rectangular overflow was modeled in SWMM5.0. Geographic Information System (GIS) and SWMM5.0 rainfall–runoff simulation have been used to determine the physical component of sub-catchments.
|
|