|
|
 |
Search published articles |
 |
|
Showing 4 results for Water Resource Management
Mr. Ahad Tavasoli, Mrs Akram Hoseinnia, Mr Ali Shahbazi, Volume 5, Issue 2 (9-2017)
Abstract
1. احمدی شرف ا. و م. تجریشی (1393). جانمایی حوضچههای ذخیره با استفاده از مدل شبیهساز SWMM و تصمیمگیری چند معیاره مکانی، مجله آب و فاضلاب، شماره 6، ص. 57-66.
2. احمدیان م. (1391). بررسی رواناب شهری با استفاده از مدل SWMM به منظور کاهش خطر سیل ( مطالعه موردی: شهر جدید هشتگرد). پایاننامه کارشناسی ارشد، دانشگاه آزاد واحد علوم و تحقیقات. 150 ص.
3. اسلامیان س.س.، م. نادری بنی و س.س. اخروی (1391). راهکارهای مدیریتی رواناب و رفع گرفتگی معابر شهری، مجموعه مقالات اولین کنفرانس ملی سامانههای سطوح آبگیر باران، مشهد مقدس.
4. تاجبخش س.م.، س.ج. طباطبایی، ا. توسلی، ع.ا. صفدری و م. سمیعی (1391). استفاده از روانابهای سطوح سنگی در آبیاری تکمیلی (مطالعه موردی ارتفاعات جنوبی مشهد)، فصلنامه سطوح آبگیر باران، سال اول، شماره 3، پاییز، صفحات 1 تا 5.
5. توسلی ا.، م. وفاخواه و ا. حسیننیا (1387). مکانیابی مناطق ذخیرهای مسیلهای شهری مشهد با کمک GIS، چکیده مقالات سومین کنفرانس مدیریت منایع آب ایران، دانشگاه تبریز، 21 الی 23 مهر ماه، 605 ص.
6. رستمی خلج م. (1390). پهنهبندی خطر سیل شهری با استفاده از تلفیق مدلهای هیدرولوژیکی و هیدرولیکی (مطالعه موردی منطقه دو شهرداری مشهد)، پایاننامه کارشناسی ارشد آبخیزداری، دانشگاه تهران.
7. سلمان ماهینی ع.، ا. حسین نیا، س.م. قاسمپوری، ا. توسلی و م. رضایی (1391). ارزیابی دراز مدت اثرات هیدرولوژیک (L-THIA) تغییر کاربری بر رواناب سالانه در مقیاس حوضه آبخیز، فصلنامه جغرافیا و توسعه، شماره 26، بهار، ص. 125-134.
8. شهبازی ع. (1391). مدیریت رواناب شهری به منظور کاهش خطرات با استفاده از مدل SWMM. پایاننامه کارشناسی ارشد، دانشکده منابع طبیعی دانشگاه تهران. 150 ص.
9. صادقی ح.ر.، ا. توسلی و ا. حسیننیا (1387). تاثیرپذیری کمیّت آبهای سطحی از تغییر اقلیم در حوضه آبخیز بار نیشابور، در لوح فشرده اولین کنفرانس ملی روز جهانی محیط زیست، دانشگاه تهران، 20 الی 21 خرداد ماه.
10. طباطبایی یزدی ج.، ح. توکلی، ع.ا. عباسی، م. عباسی، ج. باغانی و ر. غفوریان (1388). استحصال آب باران، چش انداز مدیریت بهینه رواناب شهری (مطالعه موردی در شهر مشهد)، چکیده مقالات اولین همایش آبخیزداری شهری، مرکز مطالعات و برنامهریزی شهر تهران، 10 تیر.
11. عباسی ع.ا.، ج. طباطبایی یزدی و ر. صدیق (1391). بررسی امکان توسعه مدل بارش رواناب برای سطوح آبگیر کوچک شهری، مجموعه مقالات اولین کنفرانس ملی سامانههای سطوح آبگیر باران، مشهد مقدس.
12. عینلو ف. (1393). اثر تغییر کاربری و توسعه شهری بر تولید رواناب )مطالعه موردی: شهر زنجان). پایاننامه کارشناسی ارشد، دانشکده منابع طبیعی دانشگاه تهران. 180 ص.
13. مشاور زیستاب (1391). مطالعات عملیاتی کردن طرح جامع مدیریت آبهای سطحی و تهیه طرحهای بهسازی انهار و کانالها در منطقه 1 شهرداری تهران.
14. Chio W. and Deal B.M. (2008). Assessing Hydrological Impact of Potential Land use Change through Hydrological ang Land use Change Modeling for the Kishwaukee River Basian (USA). Journal of Environmental Management. 86 :1119-1130.
15. Cunderlik J. and Simonovic P. (2004) .Assessment of water resources risk andvalnerability to changig climatic condition, university of western Ontario, project report IV.
16. Dongquan Z., Jining C., Haozheng W., Qingyuan T., Shangbing C. and Zheng S. (2009). GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach, (case study in Macau). Environ Earth Sci, 59: 465–472.
17. Gironás J., Roesner L.A., RossmanL.A. and Davis J. (2010). A new applications manual for the Storm Water Management Model (SWMM). Environmental Modelling & Software 25 (6), 813-814.
18. Huber W.C. and Dickinson R.E. (1992). Storm water management model user’s manual, version 4. Environmental Protection Agency, Georgia.
19. Nash J.E. and Sutcliffe J.V. (1970). River flow forecasting though conceptual models. Part 1-A discussion of principles. J. Hydrol. 10: 282-290.
20. Palmeri L. and Trepel M. (2002). A GIS-based score system for siting and sizing of created or restored wetlands: two case studies. Water Res. Manag., 16: 307-328.
21. Perry P. and Nawaz R. (2008). An investigation into the extent and impacts of hard surfacing of domestic gardens in an area of Leeds, United kingdom. Landscape and Urban Planning 86: 1-13.
22. Phillips B.C., Yu S., Thompson G.R. and Silva N. (2005). 1D and 2D Modelling of urban drainage systems using XP-SWMM and TUFLOW. 10th International Conference on Urban Drainage, Copenhagen, Denmark, 21-26 August, 8 pp.
23. Santhi C., Arnold J.G., Williams J.R., Dugas W.A., Srinivasan R. and Hauck L.M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37:1169–1188.
24. Sourisseau S.A., Basser S.F. and Perie T. (2007). Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams. Water Res.
25. Temprano J., Arango O., Cagiao J., Suarez J. and Tejero I. (2006). Storm water quality calibration by SWMM: a case study in Northern Spain. Water SA, 32(1): 55-63.
26. Tsihrintzis V. and Hamid R. (1998). Runoff quality prediction from small urban catchments using SWMM. Hydrol Process, 12(2): 311-329.
27. Zoppou C. (2001). Review of urban storm water models. Environmental Modelling & Software 16:195–231.
Dr Mojtaba Mohamadi, Dr Masooleh Forozanfard, Volume 12, Issue 3 (11-2024)
Abstract
Border watersheds, also known as transboundary watersheds, are areas of land that drain water to a shared water body, such as a river, lake, or sea. These watersheds are particularly important for Iran, providing water resources for agriculture, industry, and human consumption, as well as ecological benefits for biodiversity and climate regulation. One such significant border watershed in Iran is located in the eastern province of Balochistan, bordering Pakistan. It, known as Hamoun Mashekil, is the country's easternmost watershed and annually loses 297 million cubic meters of runoff from Iran to Pakistan. Given the crucial role of border watersheds in Iran, especially in arid regions, there is an urgent need for integrated and participatory water management, along with sustainable and efficient water use within the country. This study investigates the necessity and significance of surface water harvesting systems and their role in preventing water loss in the Esfandak Saravan border watershed. Recognizing the importance of analyzing runoff in border watersheds and the significance of the Esfandak watershed in Saravan City, the study begins by examining the status and trend of discharge at the Esfandak hydrometry station located at the source of the Mashkid River. For this purpose, the non-parametric Mann-Kendall test is employed. Due to the absence of hydrometry stations throughout the watershed, the study utilizes Treaclimate satellite imagery data to assess the runoff status and volume of runoff flowing from Iran to Pakistan. The results indicate a downward (decreasing) trend in discharge at the studied station on both seasonal and annual scales. Notably, this trend is statistically significant at the 95% level for spring and summer seasons on an annual basis. Analysis of a 22-year dataset (2000-2020) reveals that, on average, over 13 million cubic meters of water collected by this watershed flows from Iran to Pakistan via the border river. Without water harvesting structures, watershed management, and aquifer storage, this water is lost through runoff. Therefore, by effectively and efficiently implementing rainwater harvesting systems, the region can achieve its sustainable development goals and enhance its water security.
Sedigheh Ghafari, Mehdi Ghorbani, Ali Salajegheh, Ahmad Naderi, Mansur Ghanian, Hossein Azadi, Volume 12, Issue 3 (11-2024)
Abstract
Water governance in Khuzestan Province, particularly in the Karkheh River Basin, is a complex and multifaceted process involving multiple stakeholders. Adopting a network perspective can provide a systematic and analytical approach to studying this complexity. This research aims to analyze the network of institutional relationships and conflicts in Khuzestan's water governance using a mixed-method approach. To this end, 43 water governance-related institutions were identified as the social boundary of the network using snowball sampling method. To examine institutional relationships, a questionnaire about the intensity of interactions between these institutions was distributed and completed by the respective representatives. These institutions were categorized based on their predominant roles, and social network analysis indicators were measured at the micro level of the network. Additionally, semi-structured interviews were conducted to examine inter-institutional conflicts. Results of the centrality indices indicated that the Provincial Government holds the highest out-degree centrality (90.48%), betweenness centrality (5.1%), and closeness centrality (97.67%), indicated the significant political influence, control power, mediation role, independence, and access to resources and information, thus playing a prominent role in the water governance network. Moreover, the Khuzestan Water and Power Authority with the highest in-degree centrality of 92.86%, held the greatest political authority. The distribution of centrality measures revealed that, despite the significant role of intermediate subgroups in facilitating institutional cooperation, they have low out-degree and betweenness centrality, with asymmetric power distribution. In the conflict network, the Khuzestan Water and Power Authority receives the highest number of conflict ties, while the Environmental Protection Organization has the most conflicts with others. The presence of severe conflicts between the Khuzestan Water and Power Authority, Department of Environment and Agricultural Jihad Organization underscore the need to resolve these conflicts and strengthen coordination in water governance decision-making. Understanding these interactions and conflicts among institutions can assist policymakers in achieving effective water governance
Mohammad Koohani, Javad Behmanesh, Vahid Rezaverdinejad, Volume 13, Issue 1 (5-2025)
Abstract
This study examines the changes in the area and water quality of both permanent and seasonal wetlands over a 34-year period, highlighting their sensitivity to climate change and human activities. Wetlands, vital for regulating the water cycle and supporting biodiversity, have seen a significant reduction in area and water quality in recent decades. Satellite images from Landsat 5, 7, and Sentinel-2, with high spatial resolution, were used to generate land use maps, processed with ArcGIS Pro and ENVI software. The analysis utilized advanced techniques such as SVM, Markov, and CA-Markov models. Water quality data from 2021 to 2024 in permanent wetlands were analyzed, focusing on parameters such as TSS, NO₃, PO₄²⁻, pH, TDS, COD, BOD₅, and EC. The results indicate a notable increase in water bodies and orchards, expanding from 348.77 square kilometers in 1990 to 634.20 square kilometers in 2024, with a predicted rise to 722.90 square kilometers by 2030. Conversely, rangelands decreased from 1498.13 square kilometers in 1990 to 1037.06 square kilometers in 2024, expected to further reduce to 938.30 square kilometers by 2030. Rainfed lands remained relatively stable, while seasonal wetlands exhibited more fluctuations than permanent ones. The study also revealed that seasonal wetlands like Yadegarlu and Taleghan experienced significant reductions during dry years, whereas permanent wetlands such as Agh-Gol and Dargeh-Sangi showed greater stability. These findings underscore the importance of effective water resource management and planning, particularly during drought periods, to ensure the protection and sustainability of wetlands.
|
|